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ABSTRACT

The pressure field generated by the impact

of a rigid or flexible body on the surface of an

inviscid, compressible fluid is considered.

Some general results for the forces generated by

the impact are given. Pressure distributions for

rigid wedges are computed from known analagous

solutions of linearized supersonic airfoil theory.

In the impact problem, the transition from com-

pressible to incompressible behavior is demon-

strated as the velocity of impact is reduced.
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1. Introduction

The impact of a body onto the free surface of a

fluid is of interest in the landing of seaplanes, slamming

of ships, and the entry of a missile or other projectile intc

a body of water. When the impact velocity is sufficiently

large and/or the body is sufficiently blunt, it is necessary

to take account of the compressibility of the fluid to ob-

tain realistic results. Otherwise, the fluid may be consid-

ered incompressible.

The incompressible case has been extensively treat-

ed both theoretically and experimentally [1), [2], [3], [4].

The compressible phase has received less attention and, in

some cases, rather rough approximations of the pressure field

are suggested 151, [61, [7], [8]. A summary of previous work

is given in Ref. [9].

The purposes of the present report are: (a) to give

some general results for the force developed during the com-

pressible phase, (b) call attention to a known but little used

analogy of the impact problem to linearized supersonic flow,

(c) present numerical results for wedges which may be computed

directly from supersonic flow solutions. These computations

supply substantial corrpctions to the work of Trilling re-

ported in [5], for example. In addition, the numerical re-

sults demonstrate the transition from compressible to incom-

pressible behavior of the fluid which has not been well de-

fined heretofore.
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2. Formulation of the Impact Problem

The general problem considered is the impact of a

rigid or a flexible body onto the surface of a semi-infinite

fluid as shown in Fig. 1. The velocity of the body Vo  is

assumed to be normal to the surface of the fluid at the in-

stant of impact. It is also assumed that Vo  is small com-

pared to c , the velocity of sound in the fluid, i.e., the

entry Mach number M = V/c is much less than unity. The

fluid is considered to be a slightly compressible liquid like

water so that the change in the density p due to the impact

is small compared to the initial density p 0

It might be expected that under the conditions

Vo/c < < 1 and p/po - 1 < < 1 that the fluid could be

treated as incompressible. This is correct if the body is

not too blunt. For a blunt body, the area of contact between

the fluid and the solid expands rapidly. The velocity, Ve 

of the boundary of the contact area is of the order V/tana

where a is the typical slope of the body, Fig. 1. If Ve
is larger than c , the action of the body on the fluid cor-

responds to a loaded area which expands supersonically with

respect to the fluid. In this case, the compressibility of

the fluid must be taken into account to obtain realistic re-

sults. Defining an edge Mach number Me = V/c , it may be

anticipated that the fluid must be treated as compressible

whenever Me is of the order of 1 or more.

The two conditions, Vc < < 1 and V/c - 0(l)

are simultaneously satisfied only if tan a < < 1 . Hence

a will be small and the penetration of the body into the

fluid is small whenever compressibility must be taken into

account. This fact together with the assumption of small
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changes in density justifies the use of the acoustic equations

for the fluid. Further, it is the basis for linearization of
the boundary conditions: the pressure exerted on the fluid by
the body is considered to be applied on the plane of the ini-
tial free surface, z = 0 and the z component of velocity

of the fluid at z = 0 is set equal to the velocity of the

body.

The fluid being assumed inviscid and at rest ini-

tially, the motion of the fluid during impact is irrotational

and a velocity potential $ exists such that the velocity

u is

where , satisfies the wave equation

1 2 (2)

Within the present approximation, the pressure is given by

P = - 0  (3)

The initial conditions of no motion and zero pres-

sure in the fluid are:

at t 0 (4)0



The boundary conditions to be applied on the sur-

face z = 0 are

V on AO t > 0 (5)
o 0 on Ao

where A is the area of the intersection of the plane

z =0 and the body at any time t ; Ao is remainder of
plane z = 0 , A excluded; V is the z component of the

velocity of the body. V will be a function of (xy,t) for

a flexible body and of t only for a symmetric rigid body.

The equations governing the motion and deformation

of the impacting body must also be considered in general.

Such equations together with (1) through (5) complete the

formulation of the impact problem.

3. The Impact Force

A general formula may be derived for the total im-

pact force in terms of the velocities on the surface z = 0
The final formula is directly useful where the edge Mach

number is supersonic.

The velocity potential in any case may be written

in terms of a retarded potential [5], 10]:

rI'"(xjy.9zjt) 1 dZ d-(6)
=-27T r c
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where r = - + (y - r1) 2 + z2
1

and 0z(X,y,o,t) is the z component of velocity on the

surface z = 0 . The value of 0 is different from zero

only over the area of contact Ao  for a supersonic edge

Mach number, Me > 1 (Fig. 2a). For Me / 1 , z has non-

zero values over A° where it matches the velocity of the

body and also over the area A which is the circle r = ct1

minus the area A (Fig. 2b). The pressure over A is0 1
zero but the fluid will usually move upwards in this zone.

The limits of the integration in (6) may be considered to

extend over the entire t, 7 plane since Oz(x,y,o,t) is

zero for t < 0 . Then the pressure is

r .

P =c d=dfr (7)

where the prime denotes differentiation with respect to

T = t - r /C
1,

The force exerted by the body on the fluid is

01( ,jopt - r
F(t) =ff p(x,y,o,t)dxdy 2- ff dxdy ff r dedn

Ao  Ao

(8)

where r - (x -)2 + (y _ 1)2 . In both cases,

M >1 , the pressure on the surface z - 0 is zero outside

ofthe area of contact, AO . Hence the integration over A0

-5-



in (8) may be extended over the full plane z = 0 and then

the order of integrations may be reversed to give

F(t) - - ff d~dj ff r C dxdy (9)

The variables of the x, y integration may be changed to

r, 03 where

= arc tan V n (10)x -k

The integrand in (9) is independent of 0 . Hence using

dxdy a rdrde and integrating with respect to e gives

ct
F(t) - p ff dtdn f z(,nj,o,t - -)dr (11)

where the limits on r have been restored to reflect the

fact that z(x,y,o,t - r/c)=0, for (t - r/c) < 0 .

The prime derivative in (11) is with respect to

T - t - r/c . Using T as a variable of integration the

inner integral in (11) may be directly evaluated. The re-

sult is:

F(t) - pc ff 0z(enot)dtd n  (12)

where the integration is carried out over the entire plane

z - 0 . The most interesting aspect of the formula (12) is

that the force i(t) is expressed entirely in terms of the

instantaneous surface velocities at the time t . The do-
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tailed pressure distribution and the motion of the fluid at

any time t depend on the values of the surface velocities

at all previous times as well. Examples are given in the

succeeding sections.

For the case Me > 1 , the integrand in (12) is

zero outside of A , Fig. 2a, and

F(t) = pcoAo (13)

where V0  is the mean velocity of the body over the area of

contact A0. For a rigid body, Vo  is equal to the instan-

taneous velocity of the body.

The force given by (13) is exactly the same as that

which results from a one-dimensional motion in which a piston

of area Ao  is forced with velocity V0  into a rigid-walled

cylinder filled with fluid and of cross section Ao . In

this one-dimensional case, the pressure is uniform and equal

to pcV0 . In the impact case under consideration the pres-

sure distribution may be far from uniform, but its mean value

is pcV0

For an impact with a subsonic edge Mach number,

Me < 1 , 0z(X,y,o,t) is zero outside of A , Fig. 2b,

and

F - o pcV0 0 + pcV A11

where V and V are the mean velocities over the areas
0 1

A and A respectively. Ordinarily V will be negative.0 1 1

The term pcV A represents the effect of relief of pres-
sures on the body due to the presence of the free surface of
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the fluid.

The following alternative derivation of (12) gives

additional insight into the physical effects involved.

Consider the solution of (2) corresponding to a
point source of constant strength at r = 0 , z = 0 start-

ing at t - 0 . The velocity potential is

-B r
r r -- ) (15)

1

where H is the Heaviside unit step function and B is the

constant strength. The pressure given by (3) is

oCB r
p 0 cr 6(t _ r-- ) (16)

(16

and the z component of velocity given by (1) is

Bz r 1_ 16(t -r) + - H(t - -r] (17)'z - Tr [7

where 6 is the Dirac delta function. The value of

Oz - (x,y,o,t) is zero except for the point r = 0 . Con-

sidering the limit as z -+ 0 , it may be shown that

ff oz(xy,o,t)dxdy = BH(t) (18)

Hence

zx,y,o,t)  6(r)(t) (19)

-8-



The pressure (16) may also be derived by solving

(2) for 0 considering (19) as a prescribed boundary con-

dition and using a Laplace transform in time, a cosine trans-

form in z and a Hankel transform in r

The pressure distribution (17) gives rise to a

force on the plane z = 0 which is

p0B 27T 6(t _-
frt Jr )(tr c rdrde = pcBH(t) (20)

0 0

The fact that f(t) is constant in time is the essential

reason that F(t) given by (13) depends only on the instan-

taneous velocities of the surface.

If B is variable with time but is zero for

t %,, 0 , the force f(t) on the plane z = 0 may be written

using Eq. (20) and Duhamel's formula. Thus

f(t) = pc f r dt - pcB(t) (21)
0

which shows that the force depends only on the instantaneous

source strength.

In the impact problem, the force on the entire

z = 0 plane may be derived by integrating (21) over the

plane where the source strength B is equal to Oz(xyo,t)dA

by virtue of (18). Hence the total force on z - 0 in the

impact problem is

F(t) = ff pc45z(x,y,o,t)dxdy (22)

-9-



which is identical to (13) The pressure outside the contact

area Ao , Fig. 2, is zero for both Me > 1 and M. < 1

so (22) yields, in fact, the force exerted by the body on

-the fluid.

4. The Analoqy to Linearized Supersonic Flow

When the impacting body is a cylinder of arbitrary

cross section, whose generators are parallel to the surface

of the undisturbed fluid, there exists an analogy between the

impact problem and a problem in linearized supersonic flow

theory. In such an impact the pressure and velocity fields

are two-dimensional, i.e., they are functions of (x,z,t)

when the y axis is taken parallel to the generators of the

cylindrical body. The formulation of the impact problem is

still given by Eqs. (1) through (5).

The analogous problem in linearized supersonic

flow theory is that of a plane lifting surface placed in a

supersonic stream at a small angle of attack. The disturbance

oi the free stream due to the body may be described by a per-

turbation velocity field which has a velocity potential

O'(x',y',z') where (x',y',z') are the spatial coordinates

of the system. O'(x',y',z') satisfies the wave equation

ax a - B2  ! (23)

where B2 - U2/C2 - 1 , U is the supersonic stream velocity

which is taken to be in the z' direction and c is the

sound speed in the fluid. For a lifting surface at a small

angle of attack the boundary conditions for linearized theory

-10-



are

(X' Oz') - Ua(xt,z') on

(24)

O'(X',O,Z') = 0 on A'

where A' is the projection of the body on the plane y? -0 ,

-0and A is the remainder of the plane y' - 0

There is an extensive literature, e.g., (10], [11]

and [12!, which treats this linearized supersonic flow prob-

lem. Comparing Eqs. (23) and (24) to Eqs. (1) through (5)

it is seen that with the correspondence

- I -, t  X , y Z  , Zv I t

(25)

T - AO A, K Ao

the supersonic flow problem is exactly the same as the impact

problem. Hence the solution of any particular impact problem

is obtained immediately if the corresponding supersonic flow

case is available and vice versa.

5. Impact of a Rigid Wedge

The impact problem for a rigid wedge of arbitrary

angle is a case for which the analogous solutions are avail-

able in the supersonic flow literature. These cases are

treated by the theory of conical fields [10].

-11-



Consider a wedge of semi-vertex angle f5 which

moves in the z direction with a constant velocity V

The geometry of the problem at the instant of impact is

shown in Fig. 3.

The penetration of the body into the fluid being

assumed small, the boundary conditions (5) are

z (x,o,t) = V Vt ctn (a+2-) K x K Vt ctn a
(26)

*; (x,o,t) = 0 Vt ctn a < x , x < Vt ctn(a+23)

The width of the wetted surface of the wedge as a function

of time is shown in the (x,t) plane as the shaded region

of Fig. 4. The lines

x = Vt ctn a

(27)

x - Vt ctn (a + 23)2

are the traces of the intersection of the wedge and the

free surface. The velocities of these intersections are

x V ctn aI

(28)

- V ctn (a + 2 )

and edge Mach numbers are defined by

-12-



M = V ctn a
1 c

(29)
M = v/c I ctn (a + 2P)I

These edge Mach numbers will be called supersonic or sub-

sonic depending on whether they are greater or less than 1.

Three possibilities now arise:

(a) Both edge Mach numbers are supersonic.

(b) Both edge Mach numbers are subsonic.

(c) The mixed case.

Equation (2) is hyperbolic and there exists a

real characteristic cone in x,z,t space given by

ct - %,x77+79 = 0 (30)

The intersection of this characteristic cone with the plane

z 0 is

x = + ct (31)

and the case of supersonic and subsonic edge Mach numbers

correspond to the traces of the wetted surface in Fig. 4

lying outside or inside of the characteristic cone. The

analogues of all three cases (a), (b), and (c) in supersonic
flow have been treated by Ward [10] and Lagerstrom f11].

(a) Both edge Mach numbers supersonic.

In this case the projection of the wetted surface

of the wedge intersects the characteristic cone as shown in
Fig. 5.
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Under the transformation

r-=x = r cos 0

(32)ctz

-Z M z = r sin 0

the wave equation (2) becomes

r (r 1) + r (2r 2 -1) -0 (33
1 1

This equation is elliptic in the region r 2 1 , and1

hyperbolic in the region r1 > 1 . The regions of interest

are shown in Fig. 6 where the solution is extended anti-

symmetrically to the entire x,z plane. The region out-

side the shaded region and the circle r = 1 , is the re-
gion which has not yet felt the disturbance due to the enter-

ing wedge.

The pressure in the hyperbolic (shaded) region can

be determined by simple momentum considerations or by use of

the differential equation in this region as in [10]. The

pressure is then known on the boundary of the elliptic re-

gion. Equation (33) is reduced to Laplace's equation by

Chaplygin's transformation of the radial coordinate

r _ 1

r -i - 34



It is then possible to solve for the pressure distribution

throughout the region in which the equation is elliptic by

analytic function theory. On the wedge surface z - 0

the pressure is given by

2 Vt ctn (a+2P)< x < -ct (35)

2

pVc tan- (M2+1)(ct+x)

M - ( (I¢-l)(ct+x)1
+ -'-tan JM +,(tx -ct <x <ct

1

(36)

- ct < x < vt ctn a (37)P v c - - F l
1

In the symmetric wedge entry case ctn a -1 ctn (a+21) I
and the above expressions become

0
-vt tan < x< -t, ct< x( vt tan

(38)
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2t

92(X o.t - tan-  ; -ct < X < ct
Pvc 7r

0(39)

where Mo = M = M = edge Mach number.
0 1 2

The total force acting on the wedge as a function

of time can be obtained by integrating the pressure over the
instantaneous wetted surface on which it acts. The result

is

F(t) = pVc • Vt [ctn a + I ctn (a + 2;3)I] (40)

This demonstrates the validity of Eq. (13) where for the

present case AO = Vt [ctn a + Ictn (a + 23)I]

(b) Both edge Mach numbers subsonic.

The transformation (32) is used again and the

wave equation (2) reduces to (33). The domain of dependence

of the impacting wedge now lies entirely within the char-

acteristic cone (30) or in terms of the reduced coordinates

entirely within the circle x 2 + Z 2 = 1 , Fig. 7. Within1 1
this region (33) is elliptic and the Chaplygin transforma-
tion of the radial coordinate (34) again transforms (33)

into Laplace's equation. The solution is continued into

the upper half of the circle antisymmetrically. Outside of

and on the circle r - 1 the pressure as well as the ve-
locity components vanish. On the portion of the x axis,

M ctn (a + 21) < xI < m ctn a , (Fig. 7) corresponding to
the trace of the wedge wetted surface the boundary condition

-16-



on the normal velocity is

6d (x,o) = v (41)
1

This problem corresponds to a plane subsonic wing at an angle

of attack, the solution of which is given by Ward [10]. The

resulting expression for the pressure on the wedge surface

z=0 is

1(.Ot 1 + ctM2 +M M1 ctj

PVC 2E -(-k)K- V((l+MlM L[ 1 F;_- ct+ mi

(42)

for Vt ctn (a+2 ) < x < Vt ctnca

where K and E are respectively the complete elliptic

integrals of the first and second kind of modulus k and

k (I-M 1 )(l-M 2 )k"(1+M1, ) (17M 2 43

For a symmetric wedge, (42) simplifies to

(x.o.t)44)
pvc ctna

where E is the complete integral of the second kind with

modulus k1  and

-17-



k2 =1 _(1k)2  (45)\l~+k) S

For the symmetric case

k 2 = 1 _ % 2  (46)

The pressure field (42) can be integrated to give the total

force acting on the wedge. The result is

P(t) - pvc c2rM1M0  ct (47)
'(I+M )(+M) + %1 l- s 2 ER

For the symmetric case the above expression simpli-

fies and becomes

7TM
F(t) = pVc 2E0 (2Vt ctn a) (48)

1

It can be shown that 7MH2E1 < 1 so that the validity of

(14) is demonstrated for this subsonic case.

(c) The mixed case.

In this case the projection on the z - 0 plane

of one side of the wetted surface of the wedge intersects

the characteristic cone (30) while the other side does not.

The situation is shown in the reduced coordinates plane

(xz ) in Fig. 8.

The same transformations and similar techniques

as discussed above are applied. The solution is given by

-18-



Ward (10] and the pressure on the wedge surface z = 0 is

P(xot) 2 MP (M1+M)(ct-x)
rpVc L7,l+M (Ml(+ t

+ tan- i(Ml1)(X+ 2 ct)
t (M +14) (ct-x)

(49)

for Vt ctn (a.+2 )< x < ct

= 1 for ct < x < Vt ctn a (50)
pvc

Numerical results for a symmetric wedge entry are

shown in Fig. 8, and for a nonsymmetric case in Fig. 9.

The pressures are divided by pVc , the pressure that would

be developed in a one-dimensional impact case. The lengths

are divided by the instantaneous width of the longer wetted

side of the impacting wedge. Each curve represents a dif-

ferent edge Mach number. In Fig. 9 the ratio of the two
edge Mach numbers for each unsymmetric wedge is

m /M1 - 0.5 •

For supersonic edge Mach numbers the pressures

are continuous. However, at the boundary of the elliptic hyper-

bolic regions (Fig. 6) there is a discontinuity in the de-

rivative of the pressure. In the subsonic cases the pres-
sure fields have a singularity at the wedge free surface

intersection which is integrable and yields finite forces

acting on the wedge.



A significant feature of the results for super-
sonic edge Mach numbers is that the pressure distribution

is not uniform, the nonuniformity increasing as the edge

Mach numbers decay to 1. This is in direct contrast to the

uniform pressures assumed in [5], for example.

6. Impact of a Wedge on an Incompressible fluid.

The impact of a symmetric wedge onto the surface
of an incompressible fluid was first treated by von Karman [1]

and was developed further by Wagner [2]. The approach used

corresponds exactly to the formulation given by (1) through

(5) with c approaching infinity so that (2) becomes

Laplace's equation. The boundary conditions (5) are again

expressed by (26). The solution for an incompressible fluid

turns out to be the same as one half of the flow due to a

flat plate moving broadside through a fluid otherwise at

rest, as suggested by von Karman. The growth of the wetted

surface of the wedge with time results effectively in the

width of the flat plate expanding at the same rate. The

pressure distribution on the wedge, given in [2] and [3],
is:

P(,~)pV 2 ctn a (51)
p(x,o,t) pv

and the force on the wedge is:

F(t) = p7rVt ctn2 a (52)

where all symbols have the same meaning as in the previous

section.
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It may be shown that the limit of the force for

c in the subsonic case given by (48) is equal to (52).

Further, the pressure distributions for the edge Mach num-

ber 0.5, 0.25 and 0 (incompressible case) as given by (44)

and (51) are compared in Fig. 11 for fixed values of the

impact velocity, wedge angle and fluid density; the sound

speed c being variable. These curves imply that if the

edge Mach numbers are less than 0.25, the effects of com-

pressibility may be neglected.
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